
The considerably greater prospects for applying systems of lines with distributed 
parameters as compared with the other schemes considered can be considered the general de- 
duction from the estimates presented. 
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EQUATION OF STATE OF HYDROGEN UP TO i0 MBAR 

V. P. Kopyshev and V. V. Khrustalev UDC 536.71 

The problem of calculating the equation of state of hydrogen in its exact formulation 
is insoluble by contemporary methods, and therefore it is necessary to resort to physical 
models or formal interpolations. One such model, the compressible covolume model (CCM), was 
formulated in [i] under another name. 

The "covolume" V ~ (a function of the pressure p) is a synonym for the "elastic volume" 
of [i]. In the present article the CCM is generalized to the case of a nonideal plasma,the 
covolumes of the molecular and atomic phases of hydrogen are constructed mainly on the basis 
of experimental data, and the complete equation of state of hydrogen up to a pressure of 
I0 Mbar is calculated in the temperature range T above 100~ for p < I0 kbar, and above the 
Debye temperature @(p) for p > i0 kbar. 

Assuming the results and notation of [i], we note here only the generalization to the 
case of a plasma. There are five kinds of particles, differing in the index n: molecules 
H2 (n = m), atoms H (n = a), ions Ha + (n = i), protons H + (n = p), and electrons e (n = e); 
the u n are the concentrations of the particles, and the V~ (p) are the covolumes. For mol- 
ecules and atoms the covolumes are identified with the zero isotherms (T = 0) of the corre- 
sponding phases. According to estimates in [2] the Coulomb field of the charged particles 
is strongly self-screened, and can be neglected~ 

Electrons are formed as a result of the ionization of atoms or molecules. Strictly 
speaking, the very idea of ionization becomes indefinite when the particles are "close"; 
rather, one should speak of the excitation of electrons, of the removal of their degeneracy. 
On the other hand, when the temperature is lowered, the degeneracy of excited electrons 
shows up in the fact that they "sit" in orbits around protons or ions, forming neutral atoms 
or molecules. In accord with the fundamental idea of the additivity of free and elastic 
volumes [i], we add to the free volume ~pRT/p of electrons formed in the H = H + + e reaction 
the elastic volume upVa ~ (p). At high temperatures there is no degeneracy, and only the 
first term is importantl; at low temperatures total degeneracy is approached, and only the 
second term is important. Similarly, for the H2 = H~ + + e reaction we add ~iV~ (p) to 
~iRT/p. From the law of conservation of charge ~p + ~i = ~e. 

We assume that in the equations from [i] an ideal electron gas (ionized or excited) 
has a Maxwell--Boltzmann distribution. Then the form of the CCM equations remains unchanged 
for a plasma if we formally supplement the definitions of the covolumes of charged particles~ 
O O O O O 

Vp = Va, V i = Vm, V e = 0. 

J 
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We construct the zero isotherms of the molecular and atomic phases mainly on the 
basis of experimental data [3, 4] on an almost adiabatic compression of hydrogen in the 
0.4-8-~Mbar range~ in which the contribution to the pressure from heating is estimated as 
20-30%. 

The complete analytic form of the equation of state for the molecular phase is pre- 
sented in [4], and the zero isotherm is separated out. However, in the formulas for thermal 
energy used there the term describing the rotational and vibrational internal degrees of 
freedom of the molecules was not taken into account. Adding in this term and requiring 
the reproduction of the relation connecting the density p, the pressure p, and the energy E 
in the working region, leads to a corrected zero isotherm which for p > 0.i Mbar is well 
described by the interpolation formula 

E~ --  i44,59 ~ - -  3,68, kJ/g. (i) 

At lower pressures the zero isotherm was given in tabular form on the basis of other experi- 
ments (of. below). 

In [3] the most probable zero isotherm of the atomic phase in the 2.8-10-Mbar range is 
shown graphically. It is satisfactorily described by the interpolation formula 

p~ = i,27pa, Mbar. (2)  

A precise calculation of the zero isotherm of the atomic (metallic) phase of hydrogen 
is given in [5]. The calculated isotherm is appreciably "harder" than (2) and as a result 
doubts were raised in [5] as to the reliability of the experiment. In our opinion such a 
conclusion is premature. Let us recall that in the calculations the optimum structure of 
the solid metallic phase turned out to be anisotropic. Some rather persuasive arguments are 
presented in [6] in favor of the instability of such structures and in favor of the liquid 
state even at T = 0. If it is assumed that this possibility is realized at T = 0, or even 
for T slightly above zero, the objection to (2) is diminished. An anisotropic structure 
contains voids, and in the liquid state the atoms are more uniformly distributed over space. 
This can lead to an increase in the density of the liquid at the same pressure (analog-- ice 
and water). Is not the experiment a reflection of just this fact in the present case? 

Let us perform some more estimates. Let us recall the theoretical asymptotic behavior 
9 § ~, which is obtained by assuming that the electrons are uniformly distributed over space 
(we retain this assumption in subsequent discussions): 

E~ = A/t 2 - B/r, Ry/atom, (3) 

where r is the radius of a Wigner-Seitz cell in atomic units. The first term in (3) is the 
kinetic energy; A = 2.210. The second term contains contributions from the exchange inter- 
action energy of the electrons (Bex = 00916) and the Madelung electrostatic energy (Bes ~ 
1.8) which depends weakly on the lattice structure. Its value can be obtained in the follow- 
ing way. We imagine that hydrogen consists of independent spherical cells with a uniformly dis- 
tributed negative charge (background) and a proton at the center. Then the electrostatic 
energy of a cell is exactly equal to (Bep + Bee)/ r, where Bep = 3 is the contribution from 
the interaction of the proton with the background, and Bee = -6/5 is the contribution from 
the interaction of the background with itself, so that Bes ~Bep + Bee = 1.8, and in (3) 
B = 2.716. We note that both the calculated curve from [5] and all the other calculated 
curves cited in this paper are negligibly different from (3) in the p > 3 Mbaz'-range. 

Now let us estimate the zero isotherm for low densities. We assume that each electron 
is strongly bound to its own nucleus, and that the atoms are spherically symmetric. Then in 
each atom the spread-out electron interacts only with its own proton. An equation of form 
(3) is obtained again, but now B = B e _ = 3. The new value of B differs from the old by only 
10%, but this is sufficient to make t~ecalculated zero isotherm somewhat "softer" than the 
experimental (2). These estimates show that (2) is not anomalous. For p = 0 and B = 3 

we Obtaln E i = --1.02, which is also reasonable. For simplicity we set B = 2/~= 2.973, after 
which E~ = --i for p = O, and the virial theorem is satisfied exactly; 3pV = 2(A/r 2) + (--2/-A/r). 
Finally, for the atomic phase we take 
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(4) 

where the constant AE = 1.1645 (the sum of the ionization potential of the atom and half the 
dissociation energy of a molecule) is introduced for agreement of the zero energy levels in 
(4) and (i). 

According to (4) and (i) the equilibrium of the molecular and atomic phases at T = 0 
occurs for 1.15 ~ p ~ 1.61 g/cm 3 for p = p, = 4.40 Mbar. Generally speaking, p, depends 
on temperature, and is very sensitive to nuances of the equations of state of the phases. 

The CCM does not describe quantum phenomena at a temperature T below the Debye e. Let 
us estimate it. According to the Debye model quantum phenomena are unimportant for T > 8, 
while at T = @ the entropy S in units of the Boltzmann constant k per molecule or atom is 4. 
We call the Debye temperature the temperature at which S = 4. In the CCM for the degrees of 
freedom of the centers of gravity of the particles 

5 kT s(T,p) = ~ + In ~-p, (5) 

where ~ is the de Broglie thermal wavelength. Setting S = 4 and T = O in (5), we obtain 

where p is in Mbar, @ in ~ and C = 1300 for the molecular phase and 2000 for the atomic 
phase. 

Ordinarily, the dissociation of molecules in an ideal gas is called "temperature dis- 
sociation," and the transformation of the molecular phase into the atomic at the zero iso- 
therm "pressure dissociation." The CCM combines both kinds of dissociation into one for all 
temperatures and pressures. The equations for equilibrium concentrations have the form of 
ordinary Saha equations, but in contrast with the case of an ideal gas~ the equilibrium con- 
stants are multiplied by factors of the form exp (--Ar where A~ ~ is the change in 
the covolume chemical potential in the given reaction. For example~ in the formation of two 

O atoms from one molecule Ar ~ = 2~ -- Cm" This shift can be formally interpreted as the 
change in the dissociation energy of a molecule, which is a function of the pressure. 
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TABLE 2 

~, Mbar Ve,cmS/ 
I mole 

0,0395 I 10,5• 0,2i 7,0• 
0,86 3,4• 

V', eroS/ 
moll~ 

10,8 
6,80 
3,67 

T, *K 

t200 
5000 
7200 

I E, kl/mole 
t78 
346 

I 
s,/molec. ] ~m 

I 

11,4 I 1,ooo 
4 

t5,8 [ 0,975 
i6,5 0,887 

r 
log p. bar 

7 I S=i2 

f 
5 

log p g/cm s 

-o,5 o o,~ 

Fig. 4 

It is clear that at sufficiently high temperatures a substance is homogeneous; i.e., 
it consists of components which are not separated into phases in space. On the other hand, 
at absolute zero, and near it, there is a region of coexistence of the molecular and atomic 
phases. Consequently, at some "intermediate" temperature a critical point must exist. For 
T > 0 the CCM does not describe two-phase states in principle; it is essentially "subcrit- 
ical." Nevertheless, as the temperature is lowered the isotherms acquire a characteristic 
inflection close to the critical point under the influence of the contribution of zero iso- 
therms. If the inflection is pronounced, its effect on the Poisson adiabat is hardly dif- 
ferent from that of a phase transition of the first kind. 

The calculated values of thermodynamic quantities are shown in Figs. 1-3 in the form 
of isotherms. Instead of the quantities themselves, their common logarithms are plotted. 
The difference in log T between two neighboring isotherms is 0.25; the maximum range of vari- 
ation of T is from 0.01 eV (log T =--2) to 316 eV (log T = 2.5). 

The second independent variable (the pressure p) is varied from I bar to 30 Mbar, 
We note that close-packed spheres having radii of i bohr correspohd to a density of 2 g/cm s 
and a pressure of 8 Mbar, so that for p~ I0 Mbar atoms and molecules are still rather in- 
dependent and only slightly compressed. For p > i0 Mbar the characteristic parameter for 
electron excitation will be the Fermi energy rather than the ionization potential. There- 
fore, a pressure of i0 Mbar is a rough estimate of the limit of applicability of the CCM 
for a plasma. 

The zero isotherm of the molecular phase was taken from experiment up to 25 kbar [7] 
and extrapolated graphically to i00 kbar. With such a covolume the CCM reproduces the known 
experimental data on static compression up to 7 kbar for T = 25--150~ [8], and on shock 
compression up to ~ 40 kbar [9] with an error of no more than 5% for the density at the given 
pressure. We note that the static data [8] are reproduced with a very small error (< 0.5%) 
if the covolume is taken from Table i. 

In addition, there are experiments [i0] on single and double shock compression of 
liquid deuterium up to 210 + i0 and 860 + 50 kbar, respectively. Calculations using the 
CCM with the zero isotherms (I) and (4) agree with experiment within the limits of error of 
the measurements. Table 2 lists the calculated parameters for states at the front in three 
shock waves, and also, for comparison, the experimental values of the specific volume V e. 

According to our estimates, the working region in the experiments [3, 4] corresponds 
to an entropy S of ~ 12 pe~ molecule~ This isoentrope is shown in Fig. 4. It is clear 
that the pronounced inflection on it is due to the dissociation of molecules into atoms. 
The thin lines denote isentropes in purely molecular and purely atomic phases. At a suffi- 
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ciently low temperature dissociations lead to a "softening" of the Poisson adiabat as a re- 
sult of the formation of atoms, and adiabats with S < 12 partially pass under the zero iso- 
therm p~(p) for p < p,. The beginning of dissociation (anomaly) on the S = 12 adiabat is 
lowered to % 3 Mbar in agreement with the conclusions of the experimenters. We note that 
the construction of diagrams for equilibrium between purely molecular and purely atomic 
phases (each by the CCM) leads to an increase in p, with increasing temperature, and the two- 
phase region on the S = 12 isentrope is almost the p = 5.4-Mbar isobar and almost the T = 
0.41-eV isotherm. 
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CALCULATIONS OF A HIGH-POWER UNDERWATER EXPLOSION TAKING VAPORIZATION 

INTO ACCOUNT USING THE GENERALIZED EQUATIDN!~OF STATE OF WATER 

L. V. Al'tshuler, B. S. Kruglikov, 
and I. I. Sharipdzhanov 

UDC 532.593 

The complexity of a theoretical investigation of high-power underwater explosions is 
mainly due to the fact that, according to estimates [i], at the initial instant gigantic 
pressures of up to 10 *0 bar and temperatures of tens of millions of degrees are reached. As 
a result, in the subsequent expansion, a large bubble is formed filled with water in the 
gaseous state and surrounded by concentric two-phase liquid--vapor layers. At the same time, 
in explosions using chemical explosives a cavity is formed containing mainly uncondensed 
products of the explosion, for which it is difficult to choose adequate equations of state 
suitable for calculating the action of the explosion [2-4]. In order to take into account 
in the calculations of a high-power underwater explosion the specific features connected 
with evaporation, dissociation of water, and ionization of its components, it is necessary 
to use the equation of state of water over a wide range of variation of the thermodynamic 
parameters. A fairly realistic model for calculating a high-power underwater explosion was 
set up in [5], where the equation of state of water describing the whole region enveloped 
by the shock wave was used, and the development of the explosion was considered, but the 
calculations were carried out for the initial stage of the formation of the two-phase region, 
and the effects of vaporization were not clarified in explicit form and were not analyzed. 
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